MCHammer offers the most important charts for building and analyzing Monte-Carlo Results. MCH_Charts contains standard simulation charts for sensitivity, density, trends (time series with confidence bands) for simulation arrays, vectors and dataframes.
density_chrt(Data, x_label="Sim. Values")
Data is your array, either simulated or historical. x_label [optional] allows you to customize your X axis label.
dist = rand(Normal(),1000)
density_chrt(dist, "The Standard Normal")
The Standard Normal
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
-14.0
-13.5
-13.0
-12.5
-12.0
-11.5
-11.0
-10.5
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
-20
-10
0
10
20
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
-0.50
-0.48
-0.46
-0.44
-0.42
-0.40
-0.38
-0.36
-0.34
-0.32
-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
-0.5
0.0
0.5
1.0
-0.50
-0.45
-0.40
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Frequency
histogram_chrt(Data, x_label="Sim. Values")
Data is your array, either simulated or historical. x_label [optional] allows you to customize your X axis label.
histogram_chrt(dist, "The Standard Normal")
The Standard Normal
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
-12.0
-11.5
-11.0
-10.5
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
-20
-10
0
10
20
-12.0
-11.5
-11.0
-10.5
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
-25
-24
-23
-22
-21
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
-25
0
25
50
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
Frequency
sensitivity_chrt(ArrayName, TargetCol, Chrt_Type=1)
TargetCol : used to select the output against which the other variables are analyzed for influence.
Chrt_Type : allows to change the chart metric: Spearman (1), PPMC (2) and Contribution to Variance % (3)
sensitivity_chrt(Trials,1)
Rank Correlation
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
-4
-2
0
2
4
-3.0
-2.8
-2.6
-2.4
-2.2
-2.0
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Positive
Negative
impact
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
x2
x3
Input
Variables with Biggest Impact
trend_chrt(SimTimeArray, PeriodRange, quantiles=[0.05,0.5,0.95])
trend_chrt allows the visualization of a simulated time series. These can be generated using the GBMM function.
PeriodRange must constructed using the Dates
package and use the following syntax :
dr = collect(Date(2019,1,01):Dates.Year(1):Date(2023,01,01))
ts_trials =[]
dr = collect(Date(2019,1,01):Dates.Month(1):Date(2019,12,01))
#To setup a TimeSeries simulation with MCHammer
for i = 1:1000
Monthly_Sales = GBMM(100000, 0.05,0.05,12)
Monthly_Expenses = GBMM(50000, 0.03,0.02,12)
MonthlyCOGS = Monthly_Sales .* 0.3
MonthlyProfit = Monthly_Sales - Monthly_Expenses - MonthlyCOGS
push!(ts_trials, MonthlyProfit)
end
trend_chrt(ts_trials, dr)
timestamp
Jan 1, 2019
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan 1, 2018
2019
2020
2021
Jan 1, 2018
2019
2020
2021
Jan 1, 2018
2019
2020
2021
LowerBound
p50
UpperBound
variable
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-1.2×10⁵
-1.0×10⁵
-8.0×10⁴
-6.0×10⁴
-4.0×10⁴
-2.0×10⁴
0
2.0×10⁴
4.0×10⁴
6.0×10⁴
8.0×10⁴
1.0×10⁵
1.2×10⁵
1.4×10⁵
1.6×10⁵
1.8×10⁵
2.0×10⁵
2.2×10⁵
-1.00×10⁵
-9.50×10⁴
-9.00×10⁴
-8.50×10⁴
-8.00×10⁴
-7.50×10⁴
-7.00×10⁴
-6.50×10⁴
-6.00×10⁴
-5.50×10⁴
-5.00×10⁴
-4.50×10⁴
-4.00×10⁴
-3.50×10⁴
-3.00×10⁴
-2.50×10⁴
-2.00×10⁴
-1.50×10⁴
-1.00×10⁴
-5.00×10³
0
5.00×10³
1.00×10⁴
1.50×10⁴
2.00×10⁴
2.50×10⁴
3.00×10⁴
3.50×10⁴
4.00×10⁴
4.50×10⁴
5.00×10⁴
5.50×10⁴
6.00×10⁴
6.50×10⁴
7.00×10⁴
7.50×10⁴
8.00×10⁴
8.50×10⁴
9.00×10⁴
9.50×10⁴
1.00×10⁵
1.05×10⁵
1.10×10⁵
1.15×10⁵
1.20×10⁵
1.25×10⁵
1.30×10⁵
1.35×10⁵
1.40×10⁵
1.45×10⁵
1.50×10⁵
1.55×10⁵
1.60×10⁵
1.65×10⁵
1.70×10⁵
1.75×10⁵
1.80×10⁵
1.85×10⁵
1.90×10⁵
1.95×10⁵
2.00×10⁵
-1×10⁵
0
1×10⁵
2×10⁵
-1.0×10⁵
-9.0×10⁴
-8.0×10⁴
-7.0×10⁴
-6.0×10⁴
-5.0×10⁴
-4.0×10⁴
-3.0×10⁴
-2.0×10⁴
-1.0×10⁴
0
1.0×10⁴
2.0×10⁴
3.0×10⁴
4.0×10⁴
5.0×10⁴
6.0×10⁴
7.0×10⁴
8.0×10⁴
9.0×10⁴
1.0×10⁵
1.1×10⁵
1.2×10⁵
1.3×10⁵
1.4×10⁵
1.5×10⁵
1.6×10⁵
1.7×10⁵
1.8×10⁵
1.9×10⁵
2.0×10⁵
value